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Heteroatomic Biradicals. Electron Spin Resonance 
Spectroscopy of a Nitrogen Analogue 
of 1,8-Naphthoquinodimethane 

Sir: 

Biradical1 intermediates play an important role in many 
thermal2 and photochemical3 processes. Over the last 15 years, 
low temperature ESR spectroscopy has become a powerful, 
direct probe of these otherwise transient species.4 It appeared 
that an ESR study of variously functionalized perinaphthalene 
diyls (1) might provide insight into structure reactivity rela­
tionships in biradical chemistry. Previous work in this labo­
ratory has shown that the known 1,8-naphthoquinodimethane5 

biradical (3) could be prepared from a diazo precursor.6 We 
herein report the use of this technique to prepare a nitrogen-
centered biradical by photolysis of an azide. 

Treatment of an acetone solution of 8-methy 1-1 -naphthoyl 
chloride6 with aqueous sodium azide, at 25 0 C , produces 8-
methyl-1 -naphthyl isocyanate. Only trace amounts of the in­
termediate acyl azide could be observed.7 The isocyanate was 
hydrolyzed to l-amino-8-methylnaphthalene with aqueous 
acid. Diazotization of the amine, followed by treatment with 
sodium azide, yields l-azido-8-methylnaphthalene (4).8 

Photolysis of 4 in 2-methyltetrahydrofuran (2MTHF) at 
77 K produces ESR absorptions centered at 6100, 3300, and 
1588 G (see Figures 1 and 2). The resonance absorptions are 
characteristic of randomly oriented triplet states9 and are as­
signed to l-methyl-8-nitrenonaphthalene 5 (\D/hc\ = 0.79 

% 
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Figure 1. The ESR spectrum of biradical 6 in 2MTH F (77 K) 

Figure 2. The ESR spectrum of nitrene 5 in 2MTH F (20 K). 

± 0.02 cm- ' , \E/hc\ < 0.003 c i r r 1 ) and l-imino-8-naph-
thoquinomethane (\D/hc\ = 0.0255 ± 0.0002 cm - 1 , \E/hc\ 
= 0.0008 ± 0.0002 cm - 1 ) . Control experiments with cyclic 
amine 7' ° demonstrate that it is not photochemically converted 
into 5 or 6. The spectrum of 6 is consistent with a single con­
formation;1 ' however, the spectra of the syn and anti forms of 
the biradical may not be appreciably different. 

The \D/hc\ value of 6 is 17% larger than that of 3,5-6 indi­
cating an average, closer proximity of the two unpaired elec­
trons in theaza diyl.12 This is similar to tris(imino)trimethy-
lenemethane13 which has a larger \D/hc\ value than tri-
methylenemethane itself.4a The heteroatomic biradical 6 
strictly obeys the Curie-Weiss Law over the temperature range 
17 to 83.5 K.'4 Therefore the nitrogen-centered diyl has a 
triplet ground state, in agreement with 1,8-naphthoquinodi-
methane.5d-6'15 

At 77 K the nitrene ESR spectrum does not interconvert into 
that of the biradical; both species are indefinitely stable at this 
temperature. The heteroatomic triplet biradical is, in fact, more 
thermally labile than the triplet nitrene. Warming of the 
sample to 98 K results in the rapid and complete dissipation 
of the ESR spectrum of 6, but very little diminution of the ni­
trene signal intensity. Clearly 6 is not formed from triplet 5 in 
a thermally activated process at 77 K. 

To test whether the triplet biradical arises via secondary-
photolysis of the triplet nitrene, the signal intensities of 5 and 
6 were studied as a function of irradiation time (Figure 3). The 
ratio of 5/6 was invariant with the duration of photolysis (230 
< X < 449 nm). At 77 K the nitrene and the biradical are both 
formed simultaneously; secondary photolysis of the triplet 
nitrene is not a major source of the biradical. The hydrogen 
atom transfer may occur from an excited state (electronic or 
vibrational) of the azide, an azacycloheptatetraene,16 or singlet 
1 -methyl-8-nitrenonaphthalene. 

There are significant differences between the nitrene-het-
eroatomic biradical system (5 and 6) and the hydrocarbon case 
(2 and 3). The lifetime of 1,8-naphthoquinodimethane at 98 
K is at least an order of magnitude longer than that of the aza 
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Figure 3. The intensities of 5 and 6 as a function of irradiation time (77 
K). The lower curve can be converted into the upper by multiplying by a 
constant numerical factor of 3.0 ± 0.3. l-Azido-8-methylnaphthalenedoes 
not partition into equal amounts of 5 and 6. 

diyl. Even more striking is a comparison of 2 and 5. The triplet 
nitrene is indefinitely stable at 77 K, whereas the triplet car-
bene could not be detected even at 4 K. If the discrete carbene 
intermediate is, in fact, on the reaction pathway to 3, there 
must be a very large reactivity difference between the triplet 
states of 2 and 5. 

A complete kinetic analysis of the triplet species described 
herein is in progress. 
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Synthesis and Cope Rearrangement of 
c/s-l,2-Dialkenylcyclopropanes 

Sir: 

Attempts to synthesize cis-1,2-divinylcyclopropane ( la) 
were largely unsuccessful in the past12 owing to its rapid Cope 
rearrangement3 to 1,4-cycloheptadiene (2a) (eq 1). They have, 
however, contributed much to the development and application 
of fluxional tautomerism which led to studies of several systems 
with a la skeleton.2'4 The rearrangement has recently become 

N 

Cope 

of additional interest, since derivatives of la were implied as 
possible precursors in the biosynthesis of natural products (with 
a 2a moiety) from marine brown algae (Dictyopteris and 
Ectocarpus siliculosus).5 

Since la and most of its derivatives were inaccessible until 
a few years ago,6 it is not surprising that only few kinetic data 
for their rearrangements are known so far. We report here a 
general and convenient synthesis for cis- 1,2-dialkenylcy-
clopropanes (and the corresponding trans isomers) and kinetic 
data for their Cope rearrangements. We had shown before6b 

that low-temperature photolysis of the cis- and trans-3,5-
divinyl-1-pyrazolines (5a), obtained via 1,3-dipolar cycload-
dition of 3-diazo-1 -propene (3a) to 1,3-butadiene (4a) (Scheme 
I), provides a simple route to la.6 c Frontier orbital consider­
ations7 predict the addition of diazo compounds (3) to occur 
exclusively at the terminal double bonds of conjugated dienes 
(4). This is indeed observed and, since 3 and 4 can be prepared 
easily in great variety, a large number of derivatives (1) be­
comes accessible this way in a very short synthetic sequence 
(Scheme I).8 Moreover, as a further advantage, the stereo-
Scheme I 
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